Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study
نویسندگان
چکیده
BACKGROUND Electrical impedance tomography (EIT) is a non-invasive bedside tool which allows an individualized ventilator strategy by monitoring tidal ventilation and lung aeration. EIT can be performed at different cranio-caudal thoracic levels, but data are missing about the optimal belt position. The main goal of this prospective observational study was to evaluate the impact of different electrode layers on tidal impedance variation in relation to global volume changes in order to propose a proper belt position for EIT measurements. METHODS EIT measurements were performed in 15 mechanically ventilated intensive care patients with the electrode belt at different thoracic layers (L1-L7). All respiratory and hemodynamic parameters were recorded. Blood gas analyses were obtained once at the beginning of EIT examination. Off-line tidal impedance variation/tidal volume (TV/VT) ratio was calculated, and specific patterns of impedance distribution due to automatic and user-defined adjustment of the colour scale for EIT images were identified. RESULTS TV/VT ratio is the highest at L1. It decreases in caudal direction. At L5, the decrease of TV/VT ratio is significant. We could identify patterns of diaphragmatic interference with ventilation-related impedance changes, which owing to the automatically adjusted colour scales are not obvious in the regularly displayed EIT images. CONCLUSIONS The clinical usability and plausibility of EIT measurements depend on proper belt position, proper impedance visualisation, correct analysis and data interpretation. When EIT is used to estimate global parameters like VT or changes in end-expiratory lung volume, the best electrode plane is between the 4th and 5th intercostal space. The specific colour coding occasionally suppresses user-relevant information, and manual rescaling of images is necessary to visualise this information.
منابع مشابه
Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography
Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal...
متن کاملThe short-term effects of intermittent positive pressure breathing treatments on ventilation in patients with neuromuscular disease.
BACKGROUND The effects of intermittent positive-pressure breathing (IPPB) and abdominal belt on regional lung ventilation in neuromuscular patients are unknown. We conducted a prospective physiologic short-term study in stable neuromuscular patients to determine the effects of IPBB, with and without abdominal belt, on regional lung ventilation. METHODS IPPB was performed as 30 consecutive dee...
متن کاملNo change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography
We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positio...
متن کاملElectrical impedance tomography system based on active electrodes.
Electrical impedance tomography (EIT) can image the distribution of ventilated lung tissue, and is thus a promising technology to help monitor patient breathing to help selection of mechanical ventilation parameters. Two key difficulties in EIT instrumentation make such monitoring difficult: (1) EIT data quality depends on good electrode contact and is sensitive to changes in contact quality, a...
متن کاملVentilation distribution in rats: Part I - The effect of gas composition as measured with electrical impedance tomography
UNLABELLED The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to mea...
متن کامل